Inhibition of net HepG2 cell apolipoprotein B secretion by the citrus flavonoid naringenin involves activation of phosphatidylinositol 3-kinase, independent of insulin receptor substrate-1 phosphorylation.

نویسندگان

  • Nica M Borradaile
  • Linda E de Dreu
  • Murray W Huff
چکیده

The flavonoid naringenin improves hyperlipidemia and hyperglycemia in streptozotocin-treated rats. In HepG2 human hepatoma cells, naringenin inhibits apolipoprotein B (apoB) secretion primarily by inhibiting microsomal triglyceride transfer protein and enhances LDL receptor (LDLr)-mediated apoB-containing lipoprotein uptake. Phosphatidylinositol 3-kinase (PI3K) activation by insulin increases sterol regulatory element-binding protein (SREBP)-1 and LDLr expression and inhibits apoB secretion in hepatocytes. Thus, we determined whether naringenin activates this pathway. Insulin and naringenin induced PI3K-dependent increases in cytosolic and nuclear SREBP-1 and LDLr expression. Similar PI3K-mediated increases in SREBP-1 were observed in McA-RH7777 rat hepatoma cells, which express predominantly SREBP-1c. Reductions in HepG2 cell media apoB with naringenin were partially attenuated by wortmannin, whereas the effect of insulin was completely blocked. Both treatments reduced apoB100 secretion in wild-type and LDLr(-/-) mouse hepatocytes to the same extent. Insulin and naringenin increased HepG2 cell PI3K activity and decreased insulin receptor substrate (IRS)-2 levels. In sharp contrast to insulin, naringenin did not induce tyrosine phosphorylation of IRS-1. We conclude that naringenin increases LDLr expression in HepG2 cells via PI3K-mediated upregulation of SREBP-1, independent of IRS-1 phosphorylation. Although this pathway may not regulate apoB secretion in primary hepatocytes, PI3K activation by this novel mechanism may explain the insulin-like effects of naringenin in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of microsomal triglyceride transfer protein expression and apolipoprotein B100 secretion by the citrus flavonoid naringenin and by insulin involves activation of the mitogen-activated protein kinase pathway in hepatocytes.

Microsomal triglyceride transfer protein (MTP) is necessary for hepatocyte assembly and secretion of apolipoprotein (apo)B100-containing lipoproteins. The citrus flavonoid naringenin, like insulin, decreased MTP expression in HepG2 cells, resulting in inhibition of apoB100 secretion; however, the mechanism for naringenin is independent of insulin receptor substrate-1/2. Recently, it was reporte...

متن کامل

Inhibition of apoB secretion from HepG2 cells by insulin is amplified by naringenin, independent of the insulin receptor.

Hepatic overproduction of apolipoprotein B (apoB)-containing lipoproteins is characteristic of the dyslipidemia associated with insulin resistance. Recently, we demonstrated that the flavonoid naringenin, like insulin, decreased apoB secretion from HepG2 cells by activation of both the phosphoinositide-3-kinase (PI3-K) pathway and the mitogen-activated protein kinase/extracellular-regulated kin...

متن کامل

Nobiletin Attenuates VLDL Overproduction, Dyslipidemia, and Atherosclerosis in Mice With Diet-Induced Insulin Resistance

OBJECTIVE Increased plasma concentrations of apolipoprotein B100 often present in patients with insulin resistance and confer increased risk for the development of atherosclerosis. Naturally occurring polyphenolic compounds including flavonoids have antiatherogenic properties. The aim of the current study was to evaluate the effect of the polymethoxylated flavonoid nobiletin on lipoprotein secr...

متن کامل

Secretion of hepatocyte apoB is inhibited by the flavonoids, naringenin and hesperetin, via reduced activity and expression of ACAT2 and MTP.

The citrus flavonoids, naringenin and hesperetin, lower plasma cholesterol in vivo. However, the underlying mechanisms are not fully understood. The ability of these flavonoids to modulate apolipoprotein B (apoB) secretion and cellular cholesterol homeostasis was determined in the human hepatoma cell line, HepG2. apoB accumulation in the media decreased in a dose-dependent manner following 24-h...

متن کامل

Wu-Mei-Wan Reduces Insulin Resistance via Inhibition of NLRP3 Inflammasome Activation in HepG2 Cells

Wu-Mei-Wan (WMW) is a Chinese herbal formula used to treat type 2 diabetes. In this study, we aimed to explore the effects and mechanisms of WMW on insulin resistance in HepG2 cells. HepG2 cells were pretreated with palmitate (0.25 mM) to impair the insulin signaling pathway. Then, they were treated with different doses of WMW-containing medicated serum and stimulated with 100 nM insulin. Resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 52 10  شماره 

صفحات  -

تاریخ انتشار 2003